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Eigenmodes of electromagnetic cavities containing absorbing dielectric materials
are determined using an adaptation of the Jacobi–Davidson technique to solve dis-
crete matrix eigenequations derived from Maxwell’s equations. The discretisations,
obtained using finite difference and finite integration methods, give rise to non-
Hermitian matrices, having complex eigenvalues, and the Jacobi–Davidson method
is shown to be applicable even when very low-Q cavity eigenmodes exist in the
presence of highly lossy dielectric or permeable materials. Examples are given of
eigensolutions for both 2-D (cylindrically symmetric) and 3-D electromagnetic op-
erators. c© 2000 Academic Press

I. INTRODUCTION

Solving Maxwell’s equations in the frequency domain to obtain the electromagnetic
eigenmodes of a waveguide or cavity of arbitrary shape is an important step in the design
of many types of microwave and millimetre-wave components used in accelerator physics
applications [1], for high-power microwave generation [2] and in passive microwave circuits.
For many types of components and devices, a useful analysis may be made in the frequency
domain using an eigenmode decomposition of the electromagnetic field, and often it is
sufficient to consider only a small subset of these modes to obtain a comprehensive analysis
of device characteristics. For example, the cavity fields may be coupled to an external
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system via some resonance condition that will selectively excite only modes in a particular
frequency range. Eigenmode analysis of a cavity provides the resonant frequency and field
distribution for each mode, and also the cavity quality (Q) if ohmic losses exist. Many
numerical methods used for complex cavity eigenmode analysis fail for all but very high-Q
cavities, where losses may be considered as a small perturbation to the lossless system.
Mathematically, this corresponds to a departure from Hermitian matrices. In this paper we
address the case where strong losses are present and demonstrate that the Jacobi–Davidson
algorithm [3] can be applied successfully in this case, with a number of particular advantages
for practical computations.

An example of the application of eigenmode analysis where ohmic losses must be con-
sidered is in quantifying the energy exchange that occurs in a gyroklystron device [4] during
resonant interaction of cavity electromagnetic fields with a beam of charged particles, for
the amplification of microwave frequency radiation. Typically the coupling to either a single
mode or a small set of modes is dominant, and the interaction is strongly dependent upon
the precise frequencies and Q-values of these modes. Correct calculation of ohmic losses
is therefore important for an accurate simulation.

In Sections II and III, we outline the basic theory of electromagnetic eigenvalue for-
mulations, incorporating lossy materials, and summarise methods of iterative solution. In
Section IV, we describe in detail the adaptation of the recently described Jacobi–Davidson
algorithm to compute a selected set of eigenvalues. In Sections V–VI, we apply the algorithm
to solve a practical two-dimensional problem with ohmic loss relevant to the gyroklystron
example, while in Sections VII–VIII we extend the analysis to three dimensions and apply
the method to an example having very large losses.

II. THEORY

A. Matrix Eigenvalue Formulation

From the differential form of the continuum electromagnetic field equations a variety
of useful eigenvalue formulations may be derived, depending upon the dimensionality of
the system and upon constraints due to boundary conditions or imposed symmetries of
the field solutions. In order to determine the eigenmodes of all but the simplest of cavity
geometries, it is generally necessary to use an applicable spatial discretisation technique to
approximate the field eigenequations in the problem domain using a finite representation
suitable for numerical solution. Finite element, finite difference, and boundary element
methods have been applied widely for this purpose, and two such methods will be used here
in the examples.

To formulate a numerical eigenvalue problem, the continuum field equations are trans-
formed using either finite difference or finite element methods to yield a linear matrix
eigenequation of the generic generalised form

Axk = λk Bxk, (1)

whereA andB are discrete linear (matrix) operators, such that a finite set of components
in each solution vectorxk represents a field solution corresponding to the eigenvalueλk.
Many techniques of analysis, both direct and iterative, may be applied to solve this type
of problem [5, 6]. For complex geometries the number of unknown parameters inxk is
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generally large, precluding the practical application of full-matrix methods of solution, and
either direct sparse matrix or iterative solution methods are necessary.

For cases whereA and B are Hermitian matrices, a number of iterative methods have
been successfully applied to solve for the eigenmodes of the matrix eigenproblem. Methods
include the T¨uckmantel algorithm [7] and subspace iteration methods based on Chebyshev
polynomial acceleration [8]. These methods have been applied successfully for three-
dimensional systems with large numbers of unknowns (N≈ 105–106) to obtain a small
subset of eigenmode solutions [9].

For applications where the presence of strongly absorbing materials in a cavity is required,
numerical methods used to solve for eigenmodes of lossless structures have been found to
remain useful when small losses are introduced, but fail to converge when high losses are
present [10]. Inverse iteration has been used to determine eigenmodes of three-dimensional
cavities containing materials having loss tangents (defined below, Eq. (6)) as high as 0.4
[11]; however, long computation times were observed for the solution of a single mode.
The Jacobi–Davidson method will be demonstrated here to converge well even for modes
having very low Q, with materials having loss tangent as large as 1.0, and also to extract
a selected set of modes from the interior of the spectrum, which can be very beneficial in
practical computation.

B. Electromagetic Theory

An eigenvalue analysis of Maxwell’s equations for electromagnetic fields in three dimen-
sions may be derived assuming a complex representation of the real-valued physical fields
with explicit oscillatory time-dependence exp(iωt). For example, for the electric field,

EE = Re[ EE(Er )eiωt ]

= 1

2
( EE(Er )eiωt + c.c.), (2)

wherec.c. represents the complex conjugate term. Considering only the positive frequency
term, time derivatives of such fields may be simplified using the substitution∂

∂t → iω, and
Maxwell’s vector field equations may be written in the symmetrical form

curl(i EH) = −ω ED + i EJ
(3)

curl EE = −ω(i EB).

Together with typical material constitutive relations

ED = ε(Er ) EE
EB = µ(Er ) EH (4)

EJ = σ(Er ) EE

for material permittivityε(Er ), permeabilityµ(Er ), and conductivityσ(Er ), these lead to an
explicit second-order differential eigenequation in the complex vector fieldEE and eigen-
valueω2,

curlµ−1 curl EE = ω2

(
ε − i

σ

ω

)
EE. (5)
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If the material parametersε andµ are real valued and the conductivity is zero in the solution
domain, then this equation is of real, Hermitian form, with eigenfrequencies that are real
and non-negative and eigenfields purely real. Non-physical, zero-eigenvalued, orstatic,
solutions to this equation do exist, and will be discussed in Section VII.

For materials with non-zero conductivity, the absorption of electromagnetic energy due
to Ohmic losses may be characterized by the loss tangent,

tanδ = σ

ωε
(6)

which describes the fractional decrease in energy per wave period, divided by 2π . To
represent energy losses in materials including those due to finite conductivity, while retaining
the linear eigenvalue form, we allow complex values for material parametersε andµ,
rather than usingσ directly. Although this leads to non-physical dispersion of material
properties, it is sufficiently valid over a moderate frequency band to demonstrate our method
of solution. Such loss terms break the Hermitian symmetry property and lead to complex-
valued eigenfrequencies and eigenfields.

From Eq. (2), substituting for the real and imaginary parts of the complex eigenfrequency
ω=ω′ + iω′′, we obtain

EE = Re[ EE(Er )eiω′t ]e−ω
′′t (7)

so that a positive (negative) imaginary frequency component corresponds physically to
exponential decay (increase) of the modal field amplitude with time. The complex eigen-
frequency may be expressed as a real-valued frequency and cavity quality factor,

f = ω′

2π
, Q = ω′

2ω′′
, (8)

whereQ is defined as 2π times the ratio of the time-averaged stored energy in the cavity to
the energy loss per cycle. The factor 2 arises since the energy is proportional to the square
of the field amplitude and decays ase−2ω′′t . For some real systems having strong losses
present, the cavity-Q may become small (≈1) for some modes.

The continuum eigenequation (5) may be transformed to a discrete matrix eigenequation
of the form of Eq. (1), using for example the method described in Appendix A. The resulting
matrix form is suitable for numerical solution as described below.

III. SOLUTION OF LARGE EIGENSYSTEMS

There are many iterative methods for the solution of large linear generalised eigenvalue
problems of the form of Eq. (1) for given linear operatorsA and B, where in standard
eigenvalue problemsB is the unit matrix. These methods include inverse power iteration
methods (e.g., Inverse Power Iteration, Rayleigh Quotient Iteration) and subspace iteration
methods (e.g., Arnoldi, Davidson, Jacobi–Davidson, and Lanczos). The effectiveness of
each method depends upon the nature of the eigenproblem, particularly the overall eigen-
value distribution, whether real or complex, and the location of the specific subset of these
eigenvalues which are to be determined.

Due to the large numbers of unknowns used to discretise typical electromagnetic field
eigenvalue problems, particular care must be taken with the choice and implementation
of the solution algorithm so as to minimise the computational resources, both time and
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storage, while obtaining convergence. Methods which may be computationally efficient
when applied to small problems may scale poorly with problem size and become impractical
as the number of discrete field values increases. Typically, iterative methods are most
practical when the number of unknowns is large and are particularly applicable when the
operator is most easily represented in functional form for numerical efficiency. With iterative
methods, the number of vectors that must be stored during the solution procedure is critical
and may still become a major limitation when problem size exceeds of the order of 106–107

complex unknown field values.
Subspace projection methods represent a general class of methods for the solution of large

eigensystems. Such techniques generate and iteratively refine a vector subspace, represented
by a set of orthonormal vectors, such that the converged subspace contains the eigenvectors
corresponding to the eigenvalues of interest. The implicitly restarted Arnoldi method [12]
is an algorithm of this type that has been applied to many large-scale eigenproblems. It is
the basis for the subroutine library ARPACK.

Our particular method of interest for use with lossy structures is the Jacobi–Davidson
technique, described recently [3, 13, 14], which has been applied to large problems in fields
of quantum chemistry, acoustics, and magnetohydrodynamics [15].

IV. THE JACOBI–DAVIDSON METHOD

In outline, the Jacobi–Davidson method is an iterative subspace method, in which the large
matrix problem to be solved is projected onto smaller subspaces to obtain estimated eigen-
solutions at each iteration. The subspaces are extended by applying an orthogonal correction
procedure to selected eigensolution estimates, related to that of the Block Galerkin Inverse
Iteration (BGII) method [16]. However, the correction vectors are used toextendthe sub-
spaces as in the Davidson method [17, 18], to promote an improved solution estimate at the
next iteration. Typically, this procedure is restarted after some fixed number of iterations to
limit the maximum subspace size that must be stored. The subspace is contracted to include
only a few of the solution estimates that lie closest to the desired eigensolutions, and the pro-
cess of subspace expansion recommences. In place of this approach, we employ a strategy
in which eigenvectors associated with the least desirable eigenvalue estimates, furthest from
a target eigenvalue, are removed from the subspaces at each iteration and replaced with the
update vectors derived from the set of most desirable estimates. This maximises the retention
of information in the subspace that can contribute to the convergence of the algorithm.

The Jacobi–Davidson technique is described here for the case of a generalised non-
symmetric eigenproblem with independent left and right subspaces. The specialisation to
symmetric or Hermitian matrices is straightforward once the general procedure has been
outlined, but the full treatment given below underlines the separate consideration of left and
right sides of the system for non-Hermitian matrices.

For systems that are not Hermitian, the left and right eigenvectors corresponding to an
eigenvalue will in general not be equal, and separate subspaces should in principle be
maintained and updated. This has been suggested in connection with the original Davidson
method for use with non-normal matrices [18], while a generalised Lanczos solver for non-
symmetric systems was introduced by Cullumet al. [19] using a two-sided approach to
represent the left and right eigenvector solutions. In the standard Jacobi–Davidson method,
for which the theory is well described by Sleijpenet al. [3], a single subspace is used to
span the subspace of right eigenvectors and either the same subspace or one derived from
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it is used for the left-subspace projection. A theory for the generalised eigenproblem using
a single subspace is outlined by Bootenet al. [15].

The stages of the Jacobi–Davidson algorithm implemented are as follows.

A. Subspace Projection and Ritz Vectors

The eigensystem of dimensionN is projected at each iteration of the procedure into the
current right and left subspacesV andW, each of dimensionp, where typicallyp¿ N.
If the linear operatorsA andB are represented in some basis byN× N matrices, then the
subspaces may be represented byN× p matricesV = [v1, . . . , vp] andW= [w1, . . . , wp]
composed of column basis vectors spanningV andW, respectively. We are seeking estimates
of right-eigenvector solutions in the right-subspaceV and of left-eigenvector solutions in the
left-subspaceW, and therefore may write, for a solutionk, the vectorsxk ∈V andyk ∈W
as the products

xk = V sk, yk = Wtk, (9)

wheresk andtk are vectors of lengthp, and define right and left residual vectorsrk(sk, θk)

andqk(tk, θk) for some eigenvalue estimateθk,

rk = Axk − θk Bxk (10)

qH
k = yH

k A− yH
k Bθk. (11)

We next apply a Ritz procedure, requiring that the projection of the residual into the
opposite subspace be zero,

WHrk = 0⇔ PAsk − θk PBsk = 0 (12)

qH
k V = 0⇔ t H

k PA − t H
k PBθk = 0, (13)

where thep× p matrices

PA = WH AV, PB = WH BV

represent projections of the linear operatorsA and B on the pair of subspacesV,W.
Equations (12) and (13) represent the corresponding right and left equations of a generalised
eigenproblem for the smallp× p matricesPA and PB. This projected eigenproblem may
be solved for eigenvectorssk andtk and eigenvaluesθk using a method applicable to dense
matrices [20]. The vectorsxk and yk, obtained using (9), are termed right and left Ritz
vectors in the subspacesV andW, respectively, corresponding to the Ritz valueθk.

B. Eigenvector and Ritz Vector Orthogonality

The left and right eigenvectors of a general eigensystem possess a bi-orthogonality rela-
tion. For the simplest case where eigenvalues are distinct, pairs of non-degenerate eigenso-
lutions satisfy

t H
i PCsj = 0, i 6= j (14)

for any projected matrix of the general form

PC = WH CV, C ∈ {αA+ βB : α, β ∈ C}. (15)
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Typically, the choiceC≡ B is made, particularly whenB is positive definite. For our
electromagnetic eigenproblem, this corresponds to a norm based on the stored electrical
energy; however, a natural choice might derive from the total electromagnetic energy instead,
leading to choicesCk= A+ω2

k B. In our examples we use the simpler form, but in the
following we keep the choice ofC arbitrary for generality.

In the degenerate case, sets of vectors spanning the associated invariant subspaces may
be chosen such that this relation is satisfied for all vector pairs, and the same property holds.

From (9), (14), and (15), the biorthogonality relation is retained for the Ritz vectors, so
that

yH
i Cxj = 0, i 6= j (16)

and therefore non-degenerate pairs of Ritz vectors areC-biorthogonal.
To improve each eigenvector estimate, we search for a correction vector orthogonal to the

current Ritz vector that brings our estimate closer to the solution vector. To implement this
step in the following section, we will require operators that perform this projection. Provided
thatC is chosen such thatyH

k Cxk 6= 0, we may define orthogonal projection operators

P⊥k = I − xkyH
k C

yH
k Cxk

, Q⊥k = I − CxkyH
k

yH
k Cxk

. (17)

These operators satisfy

P⊥2
k = P⊥k , P⊥i x j =

{
0, i = j

x j , i 6= j
(18)

Q⊥2
k = Q⊥k , yH

j Q⊥i =
{

0, i = j

yH
j , i 6= j

(19)

and therefore project orthogonally to the given Ritz vector as required.

C. Jacobi Orthogonal Component Correction

The Jacobi–Davidson algorithm for a single subspace uses the right-hand residual vector
to generate a correction vector that is orthogonal to the current Ritz vector, by obtaining an
approximatesolution to a projected linear system of equations. Typically, this is performed
using a few iterations of an iterative linear solver. Since we are using separate left and right
subspaces, we must generate for each Ritz value of interest a pair of correction vectorszk

anduk that satisfy a bi-orthogonality relationship to the current right and left Ritz vectors.
We solve, approximately, the two independent systems of linear equations

Q⊥k (A− θk B)P⊥k zk = −rk, zk ⊥ xk (20)

uH
k Q⊥k (A− θk B)P⊥k = −qH

k , uk ⊥ yk. (21)

The approximate solution vectors are then incorporated in the right and left subspaces,
which will be used in the next iteration of the Ritz procedure.

For the efficient solution of these large projected linear systems, it is useful to observe
thatrk=Q⊥k rk andqH

k =qH
k P⊥k , and compare (20) and (21) to preconditioned forms used

in iterative solution methods [21]. Preconditioned variants of iterative solution methods
which treat the left- and right-hand sides equivalently, such as the quasi-minimal residual
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(QMR) [22] method or bi-conjugate gradient method (BiCG), may be adapted to solve the
two related equations above in a single procedure, with the left and right preconditioning
matrices replaced by the orthogonal projection operators. In our implementation, we used
the QMR method, since it converges uniformly using a small set of workspace vectors. In our
approximate solution we either use a fixed number of iterations or reduce the residual error
by a specified factor. To achieve convergence in the lowestoverall time, this factor is taken
to be 0.1 until the solution begins to converge, then it is reduced to 0.01. Fewer iterations are
used when the shift is poorly known and a very approximate solution is sufficiently valid,
while quicker convergence is obtained as the eigenvalues are approached.

In principle, the rate of convergence of the Jacobi–Davidson algorithm may be greatly
accelerated if a preconditioner is available to improve conditioning of this projected linear
solution step [23]. In this case, the same preconditioned variant of the QMR algorithm may
be applied.

The Jacobi–Davidson method expands the subspaces each step to include the newly
calculated correction vectors. To limit the storage requirements, the algorithm is typically
restarted after a fixed number of steps, at which point the subspace is contracted, retaining
only a few Ritz vectors having Ritz values closest to the desired eigenvalue range. However,
for a given amount of available storage, this procedure does not optimise the use of the
information obtained at each step about the eigensolutions, and a better practice is to
discard the least desirable eigensolution estimates at each step to be replaced by the new
correction vectors. A similar procedure has been suggested for the Arnoldi method [12, 24].
Furthermore, for well-converged solutions the correction vector may be added directly to
the corresponding subspace vector, and in practice the maximum subspace size need only
exceed the desired number of solution vectors by one or two vectors. This maximises the
number of solutions that may be obtained with available resources.

The complete algorithm is summarised as follows.

ALGORITHM 1. Jacobi–Davidson iteration.
Initialisation:

Select the initial subspace dimensionp. Choose initialp-dimensional right and left
subspacesV andW (i.e., sets of basis vectors{v1, . . . , vp}, {w1, . . . , wp} spanningV,
W, respectively) and compose matricesV = [v1, . . . , vp], W= [w1, . . . , wp] from
column vectors. Specify the target convergence tolerance on the norm of the residual.

Outer Iterations:

1. Project the operators onto the subspaces; i.e., computep× p matrices

PA = WH AV, PB = WH BV

2. Find eigensolutions (θk, sk, tk), for k = 1 . . . p, to the projected left and right eigen-
problems

PAsk = θk PBsk, t H
k PA = t H

k PBθk

and selectn≤ p solutions that lie closest to a target eigenvalue.
3. Calculate the Ritz vectors

xk = V sk, yk = Wtk

for k= 1 . . .n.
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4. Calculate the right and left residuals

rk = (A− θk B)xk, qH
k = yH

k (A− θk B)

Identify a numberm ≤ n of these that have not yet converged to the specified toler-
ance, for which correction vectors will be generated. Steps 5–6 apply to each pair of
Ritz vectors to be updated (exit ifm= 0):

5. Define orthogonal projection operators

P⊥k = I − xkyH
k C

yH
k Cxk

, Q⊥k = I − CxkyH
k

yH
k Cxk

6. Inner iterative solves for correction vectors. Solve approximately the right- and left-
hand linear systems

Q⊥k (A− θk B)P⊥k zk = −Q⊥k rk

uH
k Q⊥k (A− θk B)P⊥k = −qH

k P⊥k

7. Incorporate the corrections into the subspaces: Replace the subspace matricesV
andW by [x1, . . . , xn, z1, . . . , zm] and [y1, . . . , yn, u1, . . . ,um], respectively, andC-
biorthogonalise the columns, using an adapted Gram–Schmidt method. Optionally,
subspace size may be reduced by including only the sumsxk+ zk andyk+ uk for the
updated solutions closest to convergence. Setp to the new subspace size.

8. Repeat from step 1.

D. Complex Symmetric Eigenproblems

For complex symmetric systems,A = AT , B = BT , the left eigenvectors are complex
conjugates of the right eigenvectors. We may therefore use the definitions

W = V∗ ⇔ WH = VT

so that each left-side equation becomes a transpose of the corresponding right-side equation,
and only a single equation need be solved. In a numerical scheme, this may be used to
reduce the storage and computation by approximately a factor of one-half, since only a
single subspace need be stored and updated at each step. Hermitian systems allow a similar
reduction of computation, takingW=V as in the single subspace algorithm.

E. Examples

The examples that follow in the remainder of this paper demonstrate the effectiveness of
this algorithm in identifying the solutions for electromagnetic eigenproblems. The conver-
gence properties of an algorithm may depend upon the characteristics of the structure of
the cavity and the discretisation process. For example, symmetry of the structure can lead
to degeneracy of eigenvalues; materials with high loss-tangent can give rise to a spectrum
having many low-Q eigenmodes; the number of unknowns in the solution may strongly
influence the convergence time. The test examples are chosen to include a realistic level
of complexity with regard to these criteria in order to ascertain the effectiveness of the
Jacobi–Davidson algorithm for electromagnetic eigenvalue problems.
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Two types of electromagnetic eigenproblems will be illustrated in this paper. First, a
2-dimensional scalar theory for symmetric TE modes of cavities having cylindrical sym-
metry will be used to demonstrate the eigensolution algorithm. Test examples with moderate
numbers of unknowns are solved, for which eigensolutions may be determined for compar-
ison by other means. Second, the method is applied to a full 3-dimensional vector model,
based upon a finite integration method adapted from that of Bartschet al. [25], for which
additional computational issues that arise will be addressed.

V. THE 2-D SCALAR EIGENPROBLEM

The first class of problems that we shall use to demonstrate the algorithm relates to finding
the azimuthally symmetric TE eigenmodes of cylindrically symmetric cavities having an
inhomogeneous distribution of dielectric material but homogeneous permeability. In cylin-
drical coordinates,(r, θ, z), the azimuthal electric field is decoupled in this case, and an
exact two-dimensional representation of the fields for the symmetric TE modes is obtained
in terms of the single field component,Eθ (z, r ), where the dielectric material is described
by the dielectric functionε(z, r ). The class includes many structures of practical applica-
tion; the examples given below are taken from a four-cavity gyroklystron millimeter-wave
amplifier [4], in which lossy dielectric materials are used in two of the cavities to control
mode Q and field structure.

A. Eigenvalue Formulation

For such a circuit, an eigenvalue problem may be derived from (5) in the form of a
Helmholtz equation

{∇2+ ω2µε(z, r )}[Eθ (z, r )θ̂ ] = 0, (22)

where for vectors

−∇2 ≡ curl curl− grad div.

The addition of the divergence term to the operator given in (5) leaves the operator unaf-
fected, given the assumed cylindrical symmetry, since we can apply a vector identity to
ascertain the condition

εdiv EE = div ε EE − EE · gradε

= 0 (23)

in which div ε EE= 0 in the absence of free charges and the vectors of the dot product are
here necessarily orthogonal.

The θ -component equation may be written in the(z, r ) plane as the 2-D scalar eigen-
problem {

∂2

∂z2
+ ∂2

∂r 2
+ 1

r

∂

∂r
− 1

r 2

}
Eθ = −ω2µε(z, r )Eθ (24)

with boundary conditions for a closed cavity,Eθ = 0 on axis and at perfectly conducting
walls.
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B. Operator Symmetry

The 2-D operator represented in Eq. (24) is not explicitly symmetric since the first-order
derivative term has a spatial asymmetry. However, it is possible to obtain a symmetric form
for the eigensystem by rescaling the field quantities according to an energy weighting [25].
Scaling is performed such that, at least for the loss-free case, there is a physical interpretation

Energy∝ E′2

for the scaled field componentE′.
For the operator of Eq. (24), the field may be rescaled locally as

E′θ = (r ε)
1
2 Eθ

with the factorr arising from the azimuthal integration of the energy in cylindrical coordi-
nates, to give a symmetric operator acting on the scaled electric field{

ε−
1
2

[
∂2

∂z2
+ ∂2

∂r 2
− 3

4r 2

]
ε−

1
2

}
E′θ = −ω2µE′θ (25)

in which the first order partial derivative does not appear. Scaling by the permittivity func-
tion transforms the generalised eigenproblem to a standard eigenvalue form. The cavity
frequencies,ω, and mode structures,Eθ (z, r ), may be obtained from the eigensolutions of
this system.

C. Discretisation

To solve the field equations numerically we discretised the equations using the finite
difference method to represent the differential operator of Eq. (25) using a 5-point stencil
on an orthogonal, non-uniform, rectangular mesh. The permittivity at a solution point is
taken as the volume-weighted average over the four adjacent mesh cells, each assumed to be
isotropic with uniform permittivity. The symmetry of the operator is retained in the matrix
representation of the discretised equations, and this was used to significant advantage in the
numerical solution.

Using the representation of losses by complex values of the permittivity or permeability,
the discretised equations for the symmetric eigensystems retain the same matrix form,
only with some elements now complex. The matrix eigensystem using the scaled field
representation for this case iscomplex symmetric.

VI. THE 2-D EXAMPLE

We will compute the symmetric modes of two cavities used in a microwave-frequency
gyroklystron amplifier [4] using the Jacobi–Davidson algorithm. The amplifier operates for
signal frequencies close to 94 GHz and consists of a sequence of four cavities, separated
by waveguide sections, with each cavity designed to have a particular optimum frequency
and Q. Resonant interaction between the cavity fields and a cyclotron electron beam in a
strong axial magnetic field is the basis of the amplification process, and tolerances are such
that the resonant frequency of each cavity must be controlled to within 10–30 MHz.
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FIG. 1. Field density for the 93.52 GHz eigenmode of a cylindical gyroklystron cavity loaded by a ring of
lossy ceramic material.

The frequencies of oscillation and field profiles of the cavity modes determine the ef-
ficiency, gain, and bandwidth of the gyroklystron device. To achieve the design resonant
frequency and Q for each of the second and third cavities, a ring of lossy ceramic material is
used to load the cylindrically symmetric cavity. Frequencies obtained here using the Jacobi–
Davidson method are compared with eigenfrequencies obtained using a scattering matrix
technique [26, 27] and with experimental data. Results are given in terms of frequency and
Q, obtained from complex eigenvalues using (8).

Figure 1 shows the geometry and the field structure of the operating eigenmode of the
second cavity, loaded with a lossy ceramic ring. The complex permittivity of the ceramic
in all calculations wasεr = 12.24− 3.38i , having a loss tangent, tanδ= 0.276. This value
is for a composite ceramic, 80% BeO, 20% SiC at 94 GHz [28].

The Jacobi–Davidson algorithm was applied to find eigensolutions of a matrix gener-
ated using a 200× 120 cell discretisation with 20,454 field values in the solution region.
The technique successfully identified all of the confined symmetric eigenmodes, shown in
Table I. Solutions were converged to an eigenvalue convergence error of≈10−6. Even
localised modes in the ceramic ring havingQ≈ 4 were found using this technique, demon-
strating the method’s effectiveness for highly lossy modes. The same cavity was modelled
using a scattering matrix model with a non-linear root-finding procedure, and good agree-
ment was obtained as shown. In each method, a sufficient number of mesh points or modes
was included to obtain convergence of the operating mode.

Table II demonstrates the results obtained similarly for the gyroklystron’s third cavity.
The Jacobi–Davidson algorithm extracted all of the eigenmodes in the frequency range of

TABLE I

Comparison for Gyroklystron Cavity No. 2 between Eigenfrequencies

Calculated Here and with a Scattering Matrix Calculation

Cavity No. 2

This calculation, using Scattering matrix Experimental
Jacobi–Davidson calculation data [4]

Freq./GHz Q Freq./GHz Q Freq./GHz Q

1 65.782 4.21 65.736 4.21
2 93.519 172.20 93.520 174.73 93.59 130
3 103.43 45.47 103.41 46.19
4 103.83 4.27 103.99 4.26
5 115.71 38.20 115.60 39.38

Note.Experimental data are shown for the operating mode.
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TABLE II

Comparison for Gyroklystron Cavity No. 3 between Eigenfrequencies

Calculated Here and with a Scattering Matrix Calculation

Cavity No. 3

This calculation, using Scattering matrix Experimental
Jacobi–Davidson calculation data [4]

Freq./GHz Q Freq./GHz Q Freq./GHz Q

1 64.924 4.32 64.800 4.20
2 92.892 174.63 92.894 175.20 93.05 128
3 102.71 45.20 102.70 46.20
4 103.05 4.43 103.06 4.27
5 114.83 38.03 114.74 38.80

Note.Experimental data are shown for the operating mode.

interest. In each cavity, an experimentally determined frequency for the operating mode is
shown, in reasonable agreement with the theoretical values.

VII. THE 3-D VECTOR EIGENPROBLEM

The solution of three-dimensional eigenvalue problems requires a number of additional
issues to be addressed. Highly degenerate zero-frequency eigensolutions may exist that can
cause numerical difficulties, and problem size is typically significantly greater. These issues
must be addressed if large 3-D problems are to be solved successfully.

The eigenvalue form used for fully three-dimensional problems is a direct discretisation
of Eq. (5) for a given spatial distribution of material parameters. Equation (5) permits
infinitely many degenerate, zero-frequency eigensolutions, for whichEE takes the form of
the gradient of an arbitrary scalar field. In the discretised form of the operator, one-third
of the eigenvalues are zero, and this freedom can lead to numerical difficulties and even
spurious solutions unless care is taken to completely decouple these static solutions from
those of interest [29].

Zero-frequency solutions can also be problematic numerically for eigensolvers that
specifically converge to the lowest frequency solutions such as Chebyshev polynomial iter-
ation or simple inverse power iteration [6]. Either specific steps must be taken to suppress
the unwanted modes, or else it is necessary to include a divergence term in the operator.
For example, a useful choice would be

curlµ−1curl EE − ε grad

{
1

ε2µ
div ε EE

}
= ω2ε EE (26)

which in homogeneous media reduces to the vector Helmholtz equation. For the desired
modes, the additional term causes no change in the eigensolution, since from (5) these
modes satisfy divε EE ≡ 0. We have chosen the form of the additional term here so that
the two sets of solutions are completely decoupled. The divergence term raises the multiply
degenerate, static solutions of (5) to become eigensolutions of the independent auxiliary
eigenproblem

− 1

ε2µ
div ε gradφ = ω2φ (27)
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for some scalar fieldφ, with EE = −gradφ. In general, the spectrum of this auxiliary eigen-
problem overlaps that of the original, polluting the desired mode spectrum and increasing
the spectral density. For a given solution of the coupled problem, it is a straightforward
matter to identify to which component eigenproblem it is a solution by analysis of the
divergence of the eigenfield; however, this adds complexity and requires that a greater num-
ber of eigenvalues be determined initially. Alternatively, apenalty factormay be used to
multiply the auxiliary term and scale its eigenvalues beyond the range of interest.

If eigenfrequencies interior to the spectrum may be selectively determined, such as is
the case with the Jacobi–Davidson algorithm, then the issue of zero-frequency solutions
is an advantage, since the static solutions are easily identified and deselected based upon
an estimate of their eigenvalue. Fewer solutions need be calculated and the action of the
simpler curl–curl operator is faster to compute. We therefore choose here to solve (5) rather
than (26)

A. The 3-D Finite Integration Operator

The method applied here for the discretisation of the 3-D eigenproblem is related to
the Finite Integration Method described by Bartschet al. [25]. Each field is represented
by averaged field quantities defined on a mesh and its associated dual mesh. The Yee cell
arrangement [30] is followed, in which field components are defined on edges or faces of a
regular orthogonal mesh. This arrangement is shown for a Cartesian coordinate system in
Fig. 2, where the relationship between the mesh and dual mesh is apparent—each edge of
the mesh intersects a face of the dual mesh, while each dual edge intersects a mesh face. A
more general approach is possible using an irregular mesh, to which a similar analysis can
be applied.

The discretisation of Maxwell’s equations (3) using this method is detailed in Appendix A.
We obtain the discretised eigensystem corresponding to (5) as the matrix equation{

CT D−1
L C
}

V = ω2{DC}V, (28)

where the components of the linear vectorV , having units of voltage, are elemental
line-integrals of the electric field. The matrix operatorC represents a logical curl, while

FIG. 2. Yee cell structure of 3-D discretisation. The dual grid faces intersect the midpoints of the grid edges.
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diagonal matricesDC and DL are diagonal capacitance and inductance matrices respec-
tively which incorporate the material and metrical details of the discretised problem.

To transform the generalised eigenproblem to a standard eigenproblem, while retaining
symmetry, rescaling is performed via

V ′j = C1/2
j Vj ,

whereCj are the elements of the diagonal capacitance matrix, to obtain the compact sym-
metric form {

D−1/2
C CT D−1

L CD−1/2
C

}
V ′ = ω2V ′ (29)

to be solved by numerical means. Either form of the equation may be solved using this
algorithm.

VIII. THE 3-D EXAMPLES

Three-dimensional geometries increase the problem complexity in a number of ways:
(a) a three-dimensional vector field increases the number of unknowns in the solution by a
factor of three per cell over a scalar field, (b) many more cells are necessary to fill a three-
dimensional volume while maintaining solution accuracy, (c) more coupling terms arise in
the matrix operator due to greater adjacency of cells, (d) greater symmetry may exist, (e)
static solutions alter the eigenvalue distribution. The following examples demonstrate the
performance of the Jacobi–Davidson algorithm for the 3-D case.

A. Cubic Cavity with High Degeneracy

A cubic cavity with a symmetric discretisation provides an excellent test for separation of
degenerate eigensolutions, so as to obtain the associated subspace. The method successfully
identified the (real) eigenvalues of this structure, discretised on a 16×16×16 mesh, and
correctly identified even the sixfold degeneracies that exist due to the high symmetry.
Eigenvalue convergence for all modes was obtained to approximately 10−12, within a few
orders of magnitude of the machine numerical round-off error (2× 10−16).

B. Lossy Structure with Degenerate Modes

This test example follows that of Schmittet al. [10] and consists of a cavity 20 mm×
20 mm× 10 mm with a lossy dielectric block 7 mm× 7 mm× 8 mm located centrally on
the square cavity floor. The dielectric constant of the block was taken asεr = 10− 2i , a
loss tangent of tanδ= 0.2. Calculations were performed using a 40× 40× 30 cell mesh,
giving a discretised problem with 136,110 complex unknowns, slightly coarser than the
reference example. The first ten modes were all identified successfully, with calculated
eigenfrequencies in agreement with the published data as shown in Table III. Of particular
note, the pairs of degenerate modes were determined provided that the initial subspace
consisted of at least two independent random vectors. Since all solutions are obtained
from filtering of the initial subspace, at least as many starting vectors are necessary as the
degeneracy that is to be determined.

To demonstrate the convergence of the method, the solutions were permitted to converge
to the limit of numerical round-off errors. Figure 3 shows the convergence history for
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TABLE III

Eigenmode Solutions Obtained for the 3-D Lossy Cavity, Using

a 40× 40× 30 Cell Mesh with tanδ = 0.2

Freq./GHz Freq./GHz [10]

Mode Real Imag. Q Real Imag.

1 6.1591 0.2786 11.05 6.161 0.278
2/3 9.0888 0.7798 5.827 9.091 0.780
4/5 11.389 0.7577 7.516 11.39 0.759
6 11.412 1.0391 5.491 11.42 1.104
7 13.249 1.1596 5.713 13.25 1.161
8 13.632 0.8809 7.738 13.66 0.870

9/10 13.777 0.8640 7.973 13.78 0.860

each eigensolution. The rate of convergence is dependent upon the particular eigensolution,
but is uniform for each mode, including the degenerate modes. In particular, degenerate
eigenvalues exhibit very similar convergence properties, and comparison with Table III
indicates convergence rates for each solution inversely proportional to the magnitude of the
corresponding eigenfrequency,ω, with interior eigenvalues converging more slowly. This
behaviour indicates very stable convergence properties for the Jacobi–Davidson algorithm.

In practice, it is possible to update just the solutions that have an error norm exceeding
a specified threshold value, so that further convergence is suppressed, thereby minimising
the computation for a particular specified level of accuracy.

FIG. 3. Convergence history. Each trace shows the convergence of the residual norm for a single eigensolution,
using a small, constant number of iterations for each linear solution step and no limit to the convergence.
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TABLE IV

Eigenmode Solutions Obtained for the 3-D Lossy Cavity,

Using a 40× 40× 15 Cell Mesh with tanδ = 1

Freq./GHz

Mode Real Imag. Q

1 5.5249 0.9077 3.043
2/3 7.4765 2.8298 1.321
4 9.2311 3.6265 1.273

5/6 9.778 3.589 1.362
7 10.82 4.185 1.292

C. Very High Loss Structure

To demonstrate the ability of this algorithm to handle cases of extremely high loss, the
previous example was repeated with tanδ= 1.0. Table IV shows the first few eigenvalues,
using a 40× 40× 15 cell mesh for the discretisation. Although convergence time increased
by a factor of four, uniform convergence was observed for each mode and eigenfrequencies
were determined corresponding toQ≈ 1.

IX. CONCLUSION

We have applied the Jacobi–Davidson method to eigenvalue problems arising in electro-
magnetics in which strongly absorbing materials give rise to complex eigenvalues with a
large range of both real and imaginary parts. The method has been demonstrated to success-
fully identify a selected set of eigenmodes of complex cavities that contain inhomogeneous
distributions of absorbing dielectric material having loss tangent as large as one. By using a
subspace management strategy to limit the size of the subspace without the need for a restart
procedure, large eigensystems arising in the discretisation of three-dimensional problems
were solved. The method has been shown to be an attractive algorithm to aid the design of
microwave cavities that must incorporate strongly absorbing materials.

APPENDIX

I. Discretisation of Maxwell’s Equations

To transform Maxwell’s equations to a discrete orthogonal mesh, field quantities are
averaged and associated with mesh components according to whether they are scalar, vec-
tor, pseudo-vector, or pseudo-scalar quantities, determined by their transformation under
spatial inversion (in the language of differential forms, these correspond to 0-, 1-, 2-, and
3-forms, respectively). Scalar quantities are associated with mesh nodes, vector quantities
with edges, pseudo-vectors with faces, and pseudo-scalars with the cell volume. Averaging
takes place integrating over the corresponding mesh element. Field quantities associated
with the dual mesh are those quantities that are derived in the transition from the microscopic
to the phenomenological equations of Maxwell [31]. In this manner, the geometry inher-
ent in Maxwell’s equations for electromagnetic fields is well matched with the numerical
representation, and a particularly elegant form of discretisation is obtained.
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Field quantities corresponding to the mesh and dual mesh(˜) are defined as follows, having
the units shown. Electric fieldEE and magnetic fieldEH are vector fields, represented on the
mesh and dual mesh edges, respectively,

Vj =
∫

l j

EE · dl
→

[Voltage]

Ĩ j =
∫

l̃ j

EH · dl
→

[Current],

wherel j is a line element corresponding to an edge of the mesh andl̃ j is a line element
corresponding to an edge of the dual mesh. Magnetic inductionEB and electric displacement
ED are pseudo-vector fields, represented on the mesh and dual mesh faces, respectively,

8 j =
∫∫

Aj

EB · dS
→

[Magnetic flux]

Q̃ j =
∫∫

Ã j

ED · dS
→

[Charge],

whereAj is an area element corresponding to a face of a mesh cell andÃ j is an area element
corresponding to a face of a dual mesh cell.

The voltage and current values obtained represent parameters analogous with electrical
circuit theory. Correspondingly, the material parameters of permittivity and permeability
are represented by effective capacitance and inductance values. The equivalent capacitance
for each electric field component can be evaluated by considering a cell-sized capacitor
along an edge, lengthl j , with inhomogeneous dielectric material between faces of areaÃ j .
The permittivity is a pseudo-scalar quantity associated with each mesh cell. For the total
capacitance,

Cj = 1

l j

∫∫
Ã j

ε dS

= 1

l j

∑
k

εk Ã jk,

where the sum overk combines parallel capacitances over the four mesh cells adjacent to
the edge, and̃Ajk corresponds to that part of the area elementÃ j that is contained within
the cellk.

The equivalent inductance for each magnetic field component may be evaluated using a
similar averaging procedure, assuming a continuous B-field component and discontinuous
H-field component along the edge of the dual mesh. For the effective inductance,

L−1
j =

1

Aj

∫
l j

µ−1 dl

= 1

Aj

∑
k

l̃ jk

µk
,

where the sum overk corresponds to the line elementsl̃ jk in the two adjacent cells through
which the dual edge element passes.
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To lowest order in the discretisation length, we may represent the material constitutive
relations by the corresponding circuit relations

ED = ε EE⇒ Q̃ j = Cj Vj

EB = µ EH ⇒ 8 j = L j Ĩ j ,

where the equivalence with electrical circuit theory is apparent. These equations relate
parameters on the mesh to those of the dual mesh.

The integral forms of Maxwell’s equations over the finite mesh components may be rep-
resented without approximation using the averaged quantities as follows. The curl operator
for a vector field represented on the dual mesh may be evaluated using Stokes’ theorem as∫∫

Ã j

(curl EH) · dS
→=

∮
δ Ã j

EH · dl
→=

∑
k

c̃ jk Ĩ k,

wherek ranges over the edges of the dual mesh faceÃ j and the valuescjk define locally
the direction of the integration loop with respect to the definition of the field quantitiesĨ k,

c̃ jk =
{+1 same direction
−1 opposite direction.

Similarly, for the curl operator acting on a vector field represented on the mesh,∫∫
Aj

(curl EE) · dS
→=

∮
δAj

EE · dl
→=

∑
k

ĉ jk Vk

with ĉ jk defined similarly tõcjk above. Divergence and gradient operators may be similarly
defined on both the mesh and the dual mesh; however, we do not require them here.

It is possible to define global matrices to represent the two curl operators, denotedC̃ and
C, respectively, and it can be shown thatC̃ = CT [25].

We may now represent, in matrix form, Maxwell’s equations (3) for oscillatory fields in
the absence of currents as

CT (i Ĩ ) = −ωDCV

C V = −ωDL(i Ĩ ),

whereDC andDL are diagonal matrices of the capacitance and inductance terms, respec-
tively.

We therefore obtain the discretised eigensystem as the matrix equation{
CT D−1

L C
}

V = ω2 {DC}V

which is of the generalised matrix eigenform.
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